高考数学函数重要知识点
高考数学函数重要知识点
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
高考数学39个必考知识点
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别.
6.求解与函数有关的问题易忽略定义域优先的原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
19.绝对值不等式的解法及其几何意义是什么?
20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.
23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.
24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)
33.反正弦、反余弦、反正切函数的取值范围分别是
34.你还记得某些特殊角的三角函数值吗?
35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36.函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.
(3)点的平移公式:点按向量平移到点,则.
37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38.形如的周期都是,但的周期为。
39.正弦定理时易忘比值还等于2R.
高考数学不等式记忆口诀
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
高考数学复习要点
1、突出主干知识,加强薄弱环节
在二轮复习中,对高中数学的重点内容:函数、不等式、数列、几何体中的线面关系、直线与圆锥曲线及新增加内容中的向量、概率统计、导数进行强化复习。其中,函数是高中数学的核心内容,又是学习高等数学的基础,贯穿于高中数学的始终,运用函数的观点,可以从较高的角度去处理方程、不等式、数列、曲线和方程等问题。打破知识之间的界限,加强各章节知识之间的横向联系。
在第二轮复习时,要求学生一是要认真分析自己一轮复习的感受及作业、试卷情况,针对第一轮的薄弱环节,加强研究。二是要针对性地选择一些课本的典型习题、近年的高考题、模拟题,甚至是第一轮中做过的题,集中强化训练,提高一个档次。
2、提高思维能力
解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径。要求学生重视审题和解体后的总结、反思,不断积累正、反两方面的经验。
3、注重心理训练
学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的'法宝。在测试或训练题中要在适当的位置设置障碍或有意识的引入新情景、新信息问题,有意识的锻炼学生心理素质,增强学生的应变能力和知识迁移能力,提高学生应试技巧。但要把握好度,不能过于挫伤学生的自信心和积极性;
4、提高计算能力
数学高考历来重视运算能力,80%以上的分数都要通过运算而来。部分运算能力差的学生至今仍然没有对此有足够重视,而是将运算能力差完全归结于粗心,认为平时运算是浪费时间。我们必须清楚地认识到运算是一种能力和技能,必须从每一道题做起,坚持长期训练,要能够根据题设条件,合理运用概念、公式、法则、定理,提高运算的准确性。
怎么学好高中数学
一、理清概念、夯实基础
1.要透彻理解各章节公式定理,数学试卷中的各个小题都是依据各章节的概念、公式定理及知识点来进行的,它们是解题的理论基础,同时也是提高解题能力的关键所在。因此要透彻理解各种定义的由来、内容、特征,掌握其本质,并注意新旧概念间的有机联系,使数学各个基础知识点成为判断的有力工具。
2.要明确定理、公式的成立条件、推证思路、主要功能,只有这样,应用时才会心中有数、有的放矢。比如:在等差数列中定义用于证明是否等差数列。
学习数学概念不仅要解决是什么与怎么样的问题,更要解决是怎样想到的即怎么来的问题,以及有了这个概念以后,理论将怎样建立与发展起来。这样弄清概念、公式、法则、定理的来龙去脉,了解公式的推导过程及实际意义,使新旧知识联成一片,才能掌握完整的、系统的知识,才会运用,即使在忘记了的时候也能自己推导出来。
3.要在对定理、公式理解变通的基础上牢固记忆,以记导用,以用促记,这样,用起来才能得心应手。
二、总结技巧、重写错题
要认真领会数学教材中的例题,做到举一反三,触类旁通。要认真总结其中的规律,归纳其中所用的技巧和思路,学会运用这些技巧和思路来解决问题。
比如,准备一本错题本与典型题本,把平时不会做与做错的题,重新认真地做一遍,并加以总结出技巧,找出原来错误所在,并把正确的做法记住。
三、掌握方法、提高解题技能
解题练习是数学学习中最基本的训练方法,一定要思路开阔,灵活多变。解题证题也是学好数学的重要方面,做足够数量的习题练习,是巩固数学基础知识和掌握基本技能的必要途径。
解题能力的高低,证题方法的得当,决定于分析问题和解决问题的能力。这种能力一方面取决于对基础知识的理解程度,另一方面又是在练习作业中锻炼培养出来的。在练习作业中会训练思维,开拓思路。