高考数学高效备考方法
高考数学高效备考方法
抓好基础
数学习题无非就是数学概念和思想的组合应用,了解数学的基本概念和定理是解答题目的前提。只有概念清楚了,并且了解了正确的解题方法,遇到题目时我们才能很快的做出来。面对一个新的习题时,我们也可以想到平时做题的方法,迅速解答新题目。弄清基本定理是很重要的,同学们一定要注意对基本定理牢牢的掌握,否则我们解题速度会很慢,逻辑也会混乱。
制定好计划和奋斗目标
复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。
克服盲目做题而不注重归纳的现象
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的组合,利用平时所学知识就能解决,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的`通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
高考数学复习要点
1、突出主干知识,加强薄弱环节
在二轮复习中,对高中数学的重点内容:函数、不等式、数列、几何体中的线面关系、直线与圆锥曲线及新增加内容中的向量、概率统计、导数进行强化复习。其中,函数是高中数学的核心内容,又是学习高等数学的基础,贯穿于高中数学的始终,运用函数的观点,可以从较高的角度去处理方程、不等式、数列、曲线和方程等问题。打破知识之间的界限,加强各章节知识之间的横向联系。
在第二轮复习时,要求学生一是要认真分析自己一轮复习的感受及作业、试卷情况,针对第一轮的薄弱环节,加强研究。二是要针对性地选择一些课本的典型习题、近年的高考题、模拟题,甚至是第一轮中做过的题,集中强化训练,提高一个档次。
2、提高思维能力
解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径。要求学生重视审题和解体后的总结、反思,不断积累正、反两方面的经验。
3、注重心理训练
学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的'法宝。在测试或训练题中要在适当的位置设置障碍或有意识的引入新情景、新信息问题,有意识的锻炼学生心理素质,增强学生的应变能力和知识迁移能力,提高学生应试技巧。但要把握好度,不能过于挫伤学生的自信心和积极性;
4、提高计算能力
数学高考历来重视运算能力,80%以上的分数都要通过运算而来。部分运算能力差的学生至今仍然没有对此有足够重视,而是将运算能力差完全归结于粗心,认为平时运算是浪费时间。我们必须清楚地认识到运算是一种能力和技能,必须从每一道题做起,坚持长期训练,要能够根据题设条件,合理运用概念、公式、法则、定理,提高运算的准确性。
怎样学好高中数学
高中生在学习的数学的时候,先培养自己的理解能力,我们都会有这样的感觉,在初中一直不会的数学题,可能在高中理解起来就会很容易,初中理解小学的数学也很容易,这就是每个阶段,我们的理解能力都是不一样的,随着年龄和阅历的增长,理解问题会更容易。
高中的数学虽然和初中小学不一样的,但是如果你的理解能力上去,一些题自然就会了。除了要把自己的理解能力提升,还有就是多做题,多做数学题也是我们理解的一个过程。
做数学题的时候,千万不要感觉自己不会,就不做了,一定要思考,并且加以研究,即使到最后还是没有做上,老师在讲的时候,我们理解可能会深刻一点。
高中数学是需要我们有自学能力的,高中的老师之后在上课的时候,把该讲的讲完,课后如果你不去问老师,老师也不会管你,这个时候你就要自己拿不会的问题问老师。
怎样做好高中数学笔记
一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清楚地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清楚完整。
二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和把握,避免出现知识的断层、方法的缺陷。
三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有迷惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四、归纳总结。注重记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,把握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作预备,做到目标任务明确。
五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
高考数学二元一次不等式知识点
1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
9.从实际问题中抽象出二元一次不等式(组)的步骤是:
(1)根据题意,设出变量;
(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。