椭圆的面积公式知识点
椭圆的面积公式
S=(圆周率)ab(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=(圆周率)AB/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = /2]4a _ sqrt(1-(e_cost)^2)dt((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率
椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则
e=PF/PL
椭圆的准线方程
x=a^2/C
椭圆的离心率公式
e=c/a(e1,因为2a2c)
椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的`距离,数值=b^2/c
椭圆焦半径公式:|PF1|=a+ex0 |PF2|=a-ex0
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a
点与椭圆位置关系:点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1
点在圆内: x0^2/a^2+y0^2/b^21
点在圆上: x0^2/a^2+y0^2/b^2=1
点在圆外: x0^2/a^2+y0^2/b^21
直线与椭圆位置关系
y=kx+m ①
x^2/a^2+y^2/b^2=1 ②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相离△0无交点
相交△0 可利用弦长公式:A(x1,y1) B(x2,y2)
|AB|=d = (1+k^2)|x1-x2| = (1+k^2)(x1-x2)^2 = (1+1/k^2)|y1-y2| = (1+1/k^2)(y1-y2)^2
椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a
椭圆的面积公式怎么算
点与椭圆
点M(x0,y0)椭圆x?/a?+y?/b?=1;
点在圆内:x0?/a?+y0?/b?<1;
点在圆上:x0?/a?+y0?/b?=1;
点在圆外:x0?/a?+y0?/b?>1;
跟圆与直线的位置关系一样的:相交、相离、相切。
直线与椭圆
y=kx+m①
x?/a+y?/b?=1②
由①②可推出x?/a?+(kx+m)?/b?=1
相切△=0
相离△<0无交点
相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2)
求中点坐标
根据韦达定理x1+x2=-b/a,x1_x2=c/a
带入直线方程可求出y+y/2=可求出中点坐标。
|AB|=d=√(1+k?)[(x1+x2)?-4x1_x2]=√(1+1/k?)[(y1+y2)?-4x1_x2]
椭圆面积用定积分怎么算
椭圆面积用定积分算为S=abπ。
解题思路:
设椭圆x^2/a^2+y^2/b^2=1
取第一象限内面积 有 y^2=b^2-b^2/a^2_x^2
即 y=√(b^2-b^2/a^2_x^2)
=b/a_√(a^2-x^2)
由于该式反导数为所求面积,观察到原式为圆方程公式_a/b,根据(af(x))'=a_f'(x),且x=a时圆面积为a^2π/4
可得 当x=a时,1/4S=b/a_1/4_a^2_π=abπ/4
即S=abπ。
面积推导导数方法
设椭圆x^2/a^2+y^2/b^2=1
取第一象限内面积有y^2=b^2-b^2/a^2_x^2
即y=√(b^2-b^2/a^2_x^2)
=b/a_√(a^2-x^2)
由于该式反导数为所求面积,观察到原式为圆方程公式_a/b,根据(af(x))'=a_f'(x),且x=a时圆面积为a^2π/4
可得当x=a时,1/4S=b/a_1/4_a^2_π=abπ/4
即S=abπ。
此方法比较容易理解。
椭圆定义
第一定义
平面内与两定点F1、F2的距离的和等于常数2a(2a>▏F1F2▕)的动点P的轨迹叫做椭圆。
即:▏F1▕+▏F2▕=2a
其中两定点F1、F2叫做椭圆的焦点,两焦点的距离▏F1F2▕=2c<2a叫做椭圆的焦距。P为椭圆的动点。
椭圆截与两焦点连线重合的直线所得的弦为长轴,长为2a。
椭圆截垂直平分两焦点连线的直线所得弦为短轴,长为2b。
第二定义
椭圆平面内到定点F(c,0)的距离和到定直线l:x=a2/c(F不在l上)的距离之比为常数c/a(即离心率e,0<e<1)的点的轨迹是椭圆。< p="">
其中定点F为椭圆的焦点,定直线L称为椭圆的准线(该定直线的方程是
(焦点在x轴上),或(焦点在y轴上))。
其他定义
根据椭圆的一条重要性质:椭圆上的点与椭圆长轴(事实上只要是直径都可以)两端点连线的斜率之积是定值,定值为e2-1(前提是长轴平行于x轴。若长轴平行于y轴,比如焦点在y轴上的椭圆,可以得到斜率之积为-a?/b?=1/(e?-1)),可以得出:
在坐标轴内,动点(x,y)到两定点(a,0)(-a,0)的斜率乘积等于常数m(-1<m<0)。< p="">
注意:考虑到斜率不存在时不满足乘积为常数,所以x=±a无法取到,即该定义仅为去掉四个点的椭圆。
椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。