必胜高考网 > 高考备考 > 数学备考 >

圆锥曲线公式及知识点总结

时间: 舒淇 数学备考

圆锥曲线公式及知识点总结

圆锥曲线公式:椭圆

1、中心在原点,焦点在x轴上的椭圆标准方程:其中x?/a?+y?/b?=1,其中a>b>0,c?=a?-b?

2、中心在原点,焦点在y轴上的椭圆标准方程:y?/a?+x?/b?=1,其中a>b>0,c?=a?-b?

参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)

圆锥曲线公式:双曲线

1、中心在原点,焦点在x轴上的双曲线标准方程:x?/a-y?/b?=1,其中a>0,b>0,c?=a?+b?.

2、中心在原点,焦点在y轴上的双曲线标准方程:y?/a?-x?/b?=1,其中a>0,b>0,c?=a?+b?.

参数方程:x=asecθ;y=btanθ(θ为参数)

圆锥曲线公式:抛物线

参数方程:x=2pt?;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0

直角坐标:y=ax?+bx+c(开口方向为y轴,a≠0)x=ay?+by+c(开口方向为x轴,a≠0)

离心率

椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。且当0<e1时为双曲线。

圆锥的具体构成

圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;

圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。

圆锥体的展开图

在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

∵弧AB=⊙O的周长

∴弧AB=πd

∵弧AB=2πa(∠1/360°)

∴2πa(∠1/360°)=πd

∴2a(∠1/360°)=d

将a,d带入2a(∠1/360°)=d得到∠1的值。这样绘制展开图的所有所需数据都求出来了。根据数据即可画出圆锥的展开图。

母线长等于底面圆直径的圆锥,展开的扇形就是半圆。所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。

圆锥的体积怎么计算的

一个圆锥所占空间的大小,叫做这个圆锥的体积,一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

那么圆锥体积公式为:V= 1/3πR?h,其中h表示圆锥的高,R表示圆锥的底面半径,V表示圆锥的体积。

圆锥是一种几何图形,有两种定义,解析几何定义:圆锥面和一个截它的平面组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。

圆锥的五个公式是什么:

圆锥的底面积=圆的面积(π×r×r)或(π (d÷2)×(d÷2)(圆锥只有一个底面)。

圆锥的体积:V=sh÷3(S是底面积,h是圆锥高)。

圆锥全面积=πr?+πrl。

侧面展开图面积=1/2×2πr×l=πrl(r是底面半径,l是母线)。

侧面展开图弧长=底面圆周长=2πr=πd。

圆锥的相关知识整理

相关概念:

圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高圆锥只有一条高。

圆锥的侧面积:将圆锥的`侧面积不成曲线的展开,是一个扇形

圆锥的母线:圆锥的顶点到圆锥的底面圆周之间的距离。一般用字母L表示。

圆锥就是上面为尖下部是圆的立体图形,也是我们常见的几何图形之一

圆锥特点特征:

1、以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的物体叫做圆锥体。

2、圆锥由一个顶点,一个侧面和一个底面组成,从顶点到底面圆心的距离是圆锥的高。

3、圆锥有两个面,底面是圆形,侧面是曲面。

4、让圆锥沿母线展开,是一个扇形,圆柱的体积等于和它等底等高的圆锥的体积的三倍是叫圆锥形。

102642