高考数学复习方法
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。例如,平行四边形的性质,我们只要记住它的数学定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。
高考数学答题注意事项
答题时应遵循“先易后难勿恋战”的原则。高考试题编制上一般都有先易后难的特点,这样比较符合心理学原理。刚进考场时,绝大部分考生都会感到情绪比较紧张,其感知、记忆、思维等心理过程都还未完全适应考场的紧张氛围,没有达到思维的最佳状态。
解答了几道比较容易的试题后,心情渐趋稳定,智力活动恢复常态,思维的灵活性和批判性大大提高,解题速度明显加快。而且,容易题做得越多,拿到的分数就越高,底气越足,自信心大大增强。
遭遇难题时,若屡试不爽,则干脆跳过去,千万不能纠缠不休。试想想,一道15分的题目,你花了半个多小时才解答出来,即使正确,而因为你已付出了全场考试1/4的时间,却只得到了总分的1/10的回报,实在是得不偿失。这时候,说不定你已急得如热锅上的蚂蚁,方寸大乱了。
高考数学快速提分的学习方法
一、回归基础查缺漏
高考数学快速提分考生应当结合数学课本,把高考数学知识点从整体上再理一遍,要特别重视新课程新增的内容,看看有无知识缺漏,若有就应围绕该知识点再做小范围的高考复习,消灭知识死角。
二、重点知识再强化
高考数学以三角、概率、立体几何、数列、函数与导数、解析几何、解三角形、选做题为主,也是数学大题必考内容,这些板块应在老师指导下做一次小专题的强化训练,熟悉不同题型的解法。如果学校没有专门安排,考生可以把最近做过的综合试卷选五六份分类整理,把这些高考数学重点知识涉及的不同题型、解法较系统地温习一遍,快速提分就有望实现。
三、整理错题求提高
做错的数学题目就是弱点所在,找到错因,掌握了正确解法,考生的水平自然就得到提高。高考数学快速提分,为了避免重蹈覆辙,有必要把最近两个月考过的数学试卷重新梳理一下,为高考数学快速提分做好准备,看题时要思考解题思路是怎么形成的,原先的错误如何避免。
四、适量练习保熟练
为了保持状态,考生每天要保持一定的高考数学模拟练习量,题量最好视考生自己的具体情况而定,时间控制在一小时左右,目的是巩固并扩大高考数学复习成果、不至于产生“生疏感”。把数学重点放在对基本概念的理解与应用上,坚决放弃偏、难、怪题。各地模拟试卷很多,应在老师指导下适当选用,不能拿一套就做一套,这样会累垮的,要大胆取舍,考生不是做完所有练习才上考场,而是通过做适量练习掌握方法数学才能快速提分。
高考数学解题思路
1、函数与方程思想
函数思想是指使用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想实行函数与方程间的相互转化。
2、数形结合思想
中学数学研究的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方",所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于准确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这个点,同学们能够直接确定选择题中的准确选项。不但如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它相关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续实行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。