必胜高考网 > 高考备考 > 数学备考 >

高中数学怎么才能开窍

时间: 舒淇 数学备考

第一,要掌握各种应试技巧。其实高考数学题型每年就考那几种,只要你掌握了这几类题的应试技巧,基本很难不涨分的。

第二,总结高考常见题型。在网上把本省份近5年的高考真题下载下来,然后仔细深刻的研究。举个例子,线性规划问题,基本年年都考,这类题有没有一些特殊方法呢,能够快速解题呢,当然是有的。这就需要你去研究去总结了。

第三,吃好睡好。每晚睡觉不要超过11点,不要相信高中数学能凭一股蛮力就能学好,那是初中数学。既然如此,莫不如早点休息睡好觉,然后第二天精精神神的学习。吃饭一定要吃好,这个不解释,我们啥时候都要吃好,因为民以食为天。

高考提高数学成绩的方法有哪些

1、课前预习是很多高中学生在学习数学过程中,容易忽视的环节。如果高中生在课前预习了,上课时老师讲的很多东西都是会有印象的。

2、如果你在预习过程中有什么不懂的问题,在上课听讲的过程中也能一个个解开,而高中生也会顺着老师的思路一直听下去。如果你的问题,课上没有解决,那么,在课下的时候一定要第一时间找老师或是同学询问解惑。

3、还有,上课的时候一定要打起全部的精神来听课,课上认真的听讲10分钟,会比自己课下学习一个小时效果还要好。所以一定要认真听老师讲课,另外,不要对老师抱有偏见,如果你讨厌这个老师,那么,你是学不好数学的。

4、如果高中生课前预习了,课上也认真听课了,那么,最后需要做的就是课后复习了。很多高中生感觉课上自己什么都会,但是一做题就错误百出,这就是没有课后复习的结果。在课后,高中生要把当天学习的公式和定义都复习一遍,这样有利于巩固数学基础知识。

高考数学冲刺注意事项

重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。例如:三视图、茎叶图、定积分、正态分布、统计案例等。

立足基础,强调通性通法,增大覆盖面。从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。

突出新课程理念,关注应用,倡导“学以致用”。新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。有意训练每年高考试题中都出现的高频考点。

高考数学必考知识点

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a-边长,S=6a2,V=a3

4、长方体

a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱

S-底面积h-高V=Sh

6、棱锥

S-底面积h-高V=Sh/3

7、棱台

S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1-上底面积,S2-下底面积,S0-中截面积

h-高,V=h(S1+S2+4S0)/6

9、圆柱

r-底半径,h-高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、直圆锥

r-底半径h-高V=πr^2h/3

12、圆台

r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球

r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体

R-环体半径D-环体直径r-环体截面半径d-环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D-桶腹直径d-桶底直径h-桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高考数学必考公式知识点

1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):

(1)若f(x)=-f(x+k),则T=2k;

(2)若f(x)=m/(x+k)(m不为0),则T=2k;

(3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,

周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称

(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

4.函数奇偶性:

(1)对于属于R上的奇函数有f(0)=0

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

(3)奇偶性作用不大,一般用于选择填空

5.数列爆强定律:

1.等差数列中:S奇=na中,例如S 13 =13a 7

2.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

4.等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q

6.数列的终极利器,特征根方程。(如果看不懂就算了)。

首先介绍公式:对于a n+1 =pa n +q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7.函数详解补充:

(1)复合函数奇偶性:内偶则偶,内奇同外

(2)复合函数单调性:同增异减

(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8.常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法

前面减去一个1,后面加一个,再整体加一个2

9.适用于标准方程(焦点在x轴)爆强公式

k椭=-{(b?)xo}/{(a?)yo}k双={(b?)xo}/{(a?)yo}k抛=p/yo

注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技

已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0

若它们垂直:(充要条件)a1a2+b1b2=0;

若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)

注:以上两公式避免了斜率是否存在的麻烦,直接必杀!

107262