高中数学知识点有哪些
中元素各表示什么?
注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:
(3)德摩根定律:
4.你会用补集思想解决问题吗?(排除法、间接法)
的取值范围。
6.命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一,允许B中有元素无原象。)
8.函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9.求函数的定义域有哪些常见类型?
10.如何求复合函数的定义域?
义域是_____________。
11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12.反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13.反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14.如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15.如何利用导数判断函数的单调性?
值是()
A.0B.1C.2D.3
∴a的最大值为3)
16.函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17.你熟悉周期函数的定义吗?
函数,T是一个周期。)
如:
18.你掌握常用的图象变换了吗?
注意如下“翻折”变换:
19.你熟练掌握常用函数的图象和性质了吗?
的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
②求闭区间[m,n]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质!(注意底数的限定!)
利用它的单调性求最值与利用均值不等式求最值的区别是什么?
20.你在基本运算上常出现错误吗?
21.如何解抽象函数问题?
(赋值法、结构变换法)
22.掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:
23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24.熟记三角函数的定义,单位圆中三角函数线的定义
25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
(x,y)作图象。
27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
29.熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
图象?
30.熟练掌握同角三角函数关系和诱导公式了吗?
“奇”、“偶”指k取奇、偶数。
A.正值或负值B.负值C.非负值D.正值
31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。
32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
(应用:已知两边一夹角求第三边;已知三边求角。)
33.用反三角函数表示角时要注意角的范围。
34.不等式的性质有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下结论:
36.不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
39.解含有参数的不等式要注意对字母参数的讨论
40.对含有两个绝对值的不等式如何去解?
(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)
证明:
(按不等号方向放缩)
42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
43.等差数列的定义与性质
0的二次函数)
项,即:
44.等比数列的定义与性质
46.你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法
解:
[练习]
(2)叠乘法
解:
(3)等差型递推公式
[练习]
(4)等比型递推公式
[练习]
(5)倒数法
47.你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:
[练习]
(2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。
[练习]
48.你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元,每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足
p——贷款数,r——利率,n——还款期数
49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
50.解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
如:学号为1,2,3,4的四名学生的考试成绩
则这四位同学考试成绩的所有可能情况是()
A.24B.15C.12D.10
解析:可分成两类:
(2)中间两个分数相等
相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
∴共有5+10=15(种)情况
51.二项式定理
性质:
(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第
表示)
52.你对随机事件之间的关系熟悉吗?
的和(并)。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。
53.对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即
(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生
如:设10件产品中有4件次品,6件正品,求下列事件的概率。
(1)从中任取2件都是次品;
(2)从中任取5件恰有2件次品;
(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”
(4)从中依次取5件恰有2件次品。
解析:∵一件一件抽取(有顺序)
分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
要熟悉样本频率直方图的作法:
(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。
56.你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
(6)并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
(7)向量的加、减法如图:
(8)平面向量基本定理(向量的分解定理)
的一组基底。
(9)向量的坐标表示
表示。
57.平面向量的数量积
数量积的几何意义:
(2)数量积的运算法则
[练习]
答案:
答案:2
答案:
58.线段的定比分点
※.你能分清三角形的重心、垂心、外心、内心及其性质吗?
59.立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
60.三类角的定义及求法
(1)异面直线所成的角θ,0°<θ≤90°
(2)直线与平面所成的角θ,0°≤θ≤90°
(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
三类角的求法:
①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。
(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
61.空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离。
将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________。
62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
正棱锥的计算集中在四个直角三角形中:
它们各包含哪些元素?
63.球有哪些性质?
(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。
(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
积为()
答案:A
64.熟记下列公式了吗?
(2)直线方程:
65.如何判断两直线平行、垂直?
66.怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较。
直线与圆相交时,注意利用圆的“垂径定理”。
67.怎样判断直线与圆锥曲线的位置?
68.分清圆锥曲线的定义
70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)
71.会用定义求圆锥曲线的焦半径吗?
如:
通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
72.有关中点弦问题可考虑用“代点法”。
答案:
73.如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。
75.求轨迹方程的常用方法有哪些?注意讨论范围。
(直接法、定义法、转移法、参数法)
76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。
高中数学常用公式
乘法与因式分
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/a X1__X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积S=c__h 斜棱柱侧面积 S=c'__h
正棱锥侧面积S=1/2c__h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi__r2
圆柱侧面积S=c__h=2pi__h 圆锥侧面积 S=1/2__c__l=pi__r__l
弧长公式l=a__r a是圆心角的弧度数r >0 扇形面积公式 s=1/2__l__r
锥体体积公式V=1/3__S__H 圆锥体体积公式 V=1/3__pi__r2h
斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式V=s__h 圆柱体 V=pi__r2h
数学考高分的小诀窍
1、基础不牢,地动山摇。
数学想考高分,基础是最重要的,这也是很多学生数学成绩一直不好的核心原因,牢记基本公式和基本定理,根据课本目录,能熟练回忆出课本上所有知识点,真正打牢基础,你才有学好数学的可能。
2、从基础题由浅入深进行练习。
不少人对数学学习彻底失去了信心,甚至感觉自己就不是学习数学的料,其实都是平时不会选题,基础差还总爱做难题,最后被打击的自信心全无。正确的做法是从最基础的题目开始做,先完成老师布置的作业,然后再每天给自己准备一定数量的题目,题目的选择应该从浅入深,基础不好就先做简单的题目,一点一点加深难度 。
3、不要怕问。
数学想考满分,你的知识体系必须非常完美,知识没有任何漏洞才行。遇到问题千万不要放弃,一定要多问多想,遇到不会的难题,不要硬靠自己,要敢于走出去找老师解答,在这个过程中,你可以体会老师的解题方法和老师的解题思想,更有效地利用做题时间。
4、错题本必须要有。
有人经常说,数学学霸们的学习方法并不适合所有人,但错题本学习法确实是人人都应该掌握的一个高效学习法。如果不想错题一错再错,错题本是必须要有的。最重要的是经常出错的题要多看,也可以的错题进行归类,不然你整理再多错题作用也不大。
高中数学解题方法
避免“会而不对”的错误习惯
解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。但在正规考试中即使答案对了,由于过程不完整而扣分较多。
还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。必要时要作些记录,也就是“错题笔记”。每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
高中数学答题注意事项
越是容易的题要越小心,因为这样的题很可能有陷阱。
出现怪异的答案的题要小心,因为很有可能计算错误。
任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。
最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。