高考复习数学的冲刺技巧攻略
2、总结,是我认为在数学学习中最重要的一点。数学物理两门学科对于思维的要求实在是太高了,尤其是综合题中各个知识点的交叉,很容易让人一团乱麻。
高考数学思维的问题,我们需要在第一步练习的基础上总结每个模块的核心思想与通性通法。通性通法就好比答题模板,比如向量这个模块我总结出的通法有拆分、平方、投影、坐标、等和线、数形结合等。
高考数学必考知识点归纳
1、平面向量与三角函数、三角变换及其应用,这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
2、概率和统计,这部分和生活联系比较大,属应用题。
3、考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
4、考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
5、证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
高考数学常考题型归纳整理
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。