高考数学常用公式
1三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1·X2=c/a 注:韦达定理
判别式b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有一个实根
b2-4ac<0 注:方程有共轭复数根
2三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
4和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2px x2=2pyx2=-2py
直棱柱侧面积S=c·h
斜棱柱侧面积S=c'·h
正棱锥侧面积S=1/2c·h'
正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l
球的表面积S=4pi·r2
圆柱侧面积S=c·h=2pi·h
圆锥侧面积S=1/2·c·l=pi·r·l
弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r
锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h
斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长
柱体体积公式;V=s·h圆柱体V=pi·r2h
正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径
余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程y^2=2pxy^2=-2px x^2=2pyx^2=-2py
直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h
正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2
圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l
弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r
锥体体积公式V=1/3·S·H
斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s·h圆柱体V=pi·r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
5和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B))
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
6某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3
7常用导数公式
1、y=c(c为常数)y'=0
2、y=x^ny'=nx^(n-1)
3、y=a^xy'=a^xlna
4、y=e^xy'=e^x
5、y=logaxy'=logae/x
6、y=lnxy'=1/x
7、y=sinxy'=cosx
8、y=cosxy'=-sinx
9、y=tanxy'=1/cos^2x
10、y=cotxy'=-1/sin^2x
11、y=arcsinxy'=1/√1-x^2
12、y=arccosxy'=-1/√1-x^2
13、y=arctanxy'=1/1+x^2
14、y=arccotxy'=-1/1+x^2
高中数学复习方法
1、把答案盖住看例题
数学例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的数学思维空间扩展了,看问题也全面了。如果把数学题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把数学错题记下来。
学生若能将每次数学考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将数学试卷中出现的错误进行分类。
高中数学高效学习方法
明晰概念
高中数学中的概念是比较严谨的,各个定义间都有很强的逻辑联系,逐个理解后就应把概念记牢,高考的选择题会涉及这方面的内容,而某些解答题也会由于概念定义所限而由繁变简,掌握好数学概念之后,有利于基础打牢,要做到“明晰”,关键是要多查书,勤查书,不要一知半解。
刻苦练习
熟能生巧,对数学而言,也是如此。做题能提高对题型的熟识度,对技巧的熟识度,以及计算的准确度。而以上这些,会大大提高解题速度和准确率。而练习,也是要掌握方法的,习题太易,会使人生厌;习题太难,会让人胆怯。
调整状态
状态对于考生来讲,非常重要,数学考试中状态的差异,会带来成绩上巨大的波动。一般考前一段时间,老师会发很多练习以强化训练,而实际上,状态的调整因人而异。
有的人在数学训练之后对数学题目很厌烦,即使在考场上题目会做,往往草草收笔,过程简略,以致痛失步骤分;有的人训练得不够时,找不到做题的感觉,思维僵了,愣是解不出本在自己实力范围之内的题。
高中数学按什么顺序复习
高中数学复习的顺序:集合,复数,推理,命题与条件,二项式定理,三角函数,解三角形,数列,向量,不等式,排列组合,直线方程与圆,统计,概率,数学传统文化,函数,导数,圆锥曲线,立休几何。由易到难,层层递进。这样的安排才是最合理,最高效的。
全面掌握好概念、公式、定理、公理、推论等基础知识,切实落实好课本中典型的例题和课后典型的练习题, 落实好每次课的作业,让自己能较熟练地运用基础知识解决简单的数学问题。同时跟好每个单元的跟踪检测,把难题在一次次反复做中去强化、落实。
高中数学解题技巧
(1)、整体上安排要坚持“两先两后”
先览后做,平时训练和大型考试中,有的同学便急急忙忙“偷偷”做题,加重了自己的心理紧张程度,就有可能影响发挥,而正确的做法就是应是先统览试卷,摸清“题情”。
对练习和测试作总体了解,寻找解决这部分题的知识内容。 先易后难,部分学生善“钻研”,先做难题,无功后返,以致该得的分没得到,造成总分较低。
(2)、数学解题中要坚持“两快两慢”
审题要慢,答题要快。“成在审题,败在审题”,要咬文嚼字,抓“题眼”,观察分析抓“特征”,深刻挖掘其隐含的内在联系;
数学计算要慢,书写要快,平时练习就要养成这种习惯,否则计算失误,后面就是“赔了夫人又折兵”了。