必胜高考网 > 高考备考 > 数学备考 >

等比数列求和公式

时间: 泽慧 数学备考

q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

q=1时Sn=na1

(a1为首项,an为第n项,d为公差,q 为等比)

这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1 时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。

等比数列求和公式推导

由等比数列定义

a2=a1xq

a3=a2xq

a(n-1)=a(n-2)xq

an=a(n-1)xq 共n-1个等式两边分别相加得

a2+a3+...+an=[a1+a2+...+a(n-1)]xq

即Sn-a1=(Sn-an)xq,即(1-q)Sn=a1-anxq

当q≠1时,Sn=(a1-anxq)/(1-q)(n≥2)

当n=1时也成立.

当q=1时Sn=nxa1

所以Sn=nxa1(q=1);(a1-anxq)/(1-q)(q≠1)。

错位相减法

Sn=a1+a2+a3+...+an

Snxq=a1xq+a2xq+...+a(n-1)xq+anxq=a2+a3+...+an+anxq

以上两式相减得(1-q)xSn=a1-anxq

数学归纳法

证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;

(2)假设当n=k(k≥1,k∈Nx)时,等式成立,即ak=a1qk-1;

当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;

这就是说,当n=k+1时,等式也成立;

等比数列的性质

①若 m、n、p、q∈Nx,且m+n=p+q,则amxan=apxaq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则

(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…

(can),c是常数,(anxbn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。

(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

(6)由于首项为a1,公比为q的等比数列的通向公式可以写成anxq/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列

由(1)(2)可以判断,等式对一切n∈Nx都成立。

高中数学重点公式大全

1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1xx2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh

正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2

圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl

弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sxh圆柱体V=pixr2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)x(a+b-c)x1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

高中怎样能学好数学

课前预习与准备

课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。

课后总结与复习

有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

作业要“思、问、集”。作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想,如:方程的思想、函数的思想、数形结合的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。 总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛, 于是,东看看西翻翻,一天下来,不知道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。

132735