三角函数推导万能公式
三角函数推导万能公式大全
1、三角函数推导公式——万能公式推导
sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],
(因为cos2(α)+sin2(α)=1)
再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
2、三角函数推导公式——三倍角公式推导
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]
上下同除以cos3(α),得:
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)
=3sinα-4sin3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=[2cos2(α)-1]cosα-2cosαsin2(α)
=2cos3(α)-cosα+[2cosα-2cos3(α)]
=4cos3(α)-3cosα
即
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
3、三角函数推导公式——和差化积公式推导
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2
同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2
这样,我们就得到了积化和差的公式:
cosasinb=[sin(a+b)-sin(a-b)]/2
sinasinb=-[cos(a+b)-cos(a-b)]/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]
4、同角三角函数的基本关系式
倒数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin2(α)+cos2(α)=1
1+tan2(α)=sec2(α)
1+cot2(α)=csc2(α)
同角三角函数关系六角形记忆法
构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
三角函数的8个诱导公式是什么
1. 正弦函数的诱导公式
sin(-x) = -sin(x)
这个公式表明,正弦函数的值在x轴上是关于原点对称的。也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。
2. 余弦函数的诱导公式
cos(-x) = cos(x)
这个公式表明,余弦函数的值在y轴上是关于原点对称的。也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。这个公式同样也可以帮助我们计算负角的余弦值。
3. 正切函数的诱导公式
tan(-x) = -tan(x)
这个公式表明,正切函数的值在原点上是关于y轴对称的。也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。这个公式在计算负角的正切值时非常有用。
4. 余切函数的诱导公式
cot(-x) = -cot(x)
这个公式表明,余切函数的值在原点上是关于x轴对称的。也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。这个公式同样也可以帮助我们计算负角的余切值。
5. 正弦函数的平方的诱导公式
sin^2(x) + cos^2(x) = 1
这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。
6. 正切函数的平方的诱导公式
tan^2(x) + 1 = sec^2(x)
这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。这个公式在计算三角形中的未知边长时非常有用。
7. 余切函数的平方的诱导公式
cot^2(x) + 1 = csc^2(x)
这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。这个公式同样也可以帮助我们计算三角形中的未知边长。
8. 正弦函数和余弦函数的诱导公式
sin(x + π/2) = cos(x)
cos(x + π/2) = -sin(x)
这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。这个公式在计算三角函数的复合函数时非常有用。
三角函数记忆口诀
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:
把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
符号判断口诀:
全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。
也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。
“ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。
另一种口诀:正弦一二切一三,余弦一四紧相连,言之为正。
三角函数怎样算度数
一、sin度数公式
1、sin 30= 1/2
2、sin 45=根号2/2
3、sin 60= 根号3/2
二、cos度数公式
1、cos 30=根号3/2
2、cos 45=根号2/2
3、cos 60=1/2
三、tan度数公式
1、tan 30=根号3/3
2、tan 45=1
3、tan 60=根号3
知识拓展:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650;
sin15°=0.259
三角函数的基本解释
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2