必胜高考网 > 高考备考 > 数学备考 >

高考数学三角函数必背公式

时间: 倩愉 数学备考

1、设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、诱导公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

6、和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

三角函数的性质

三角函数性质是:如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。例如,正弦函数的最小正周期是2π。

对于正弦函数y=sinx,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。正弦函数和余弦函数的最小正周期是2π。

高考数学学习方法

1、转变为完成任务而做题的思想,把精力用于自主研究上,可以多看例题,遇到不懂的地方,就顺藤摸瓜,挖掘出问题的根源。一遍不行两边两边不行三遍。

2、能动手的就操作一下,因为人类知识的形成直观经验最重要,别人说的不如自己试试印象深刻。然后做一个明了的总结。

3、对于几何问题,重要的是关注性质定理是怎么得来的,像上面说的该动手的最好试试,对一些关键词弄懂意思。将有异同点的问题摘记在一起做好比较,找出它们的差别。

4、对代数问题,除了上面3说的外,采用数形结合的方法,目的还是为了直观好理解。特别是函数问题,不等式,方程。

高三数学怎么学

高三数学以复习为主,基本没有新知识了。而且高三一年基本就在各种试卷和练习册中度过,所以关键还是从做题下手。

第一:巩固基础。一定要熟练掌握高中数学中的各种公式、定理与性质。这样能确保在填空和选择题中拿到必要的分数,一般也能解决大题中的第一小问。在做题时,如果没有明确思路,可以先在脑海中想一遍题中所涉及的知识点,从已知推断未知。

第二:把握重点。有些题目类型是常考甚至必考的。在平时的考试与练习中,注意知识点的出现频率,把握重点知识,这样,即使不能全面学好高中数学,也会增加你高考成功的几率。

第三:端正学习态度,这是最重要的一点。高三是非常紧张和难过的一年,很多同学在这一年会觉得心很累,从而有投机心理,总想给自己放个假,休息一下。劳逸结合是必要的,但一定要把握好这个度。不能因为遇到挫折困难就退缩,不能放任自己得过且过,要保持紧张,严肃认真的对待每一道题,每一节课。

第四:在合理范围内,劳逸结合。高三的学习和生活是紧张的,要适当调节自己的压力,不能把自己逼得太紧。

高考数学复习的方法

一、分类记忆法

遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);

(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。

二、推理记忆法

许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,其余可利用推理得到,这种记忆称为推理记忆。

例如,平行四边形的性质,我们只要记住它的定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。

三、回想记忆法

高考数学复习在重复记忆某一章节的知识时,不看具体内容,而是通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时,回想记忆法与标志记忆法是配合使用的。

134518