高中数学立体几何易错知识点
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
3.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
4.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
5.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
6.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
7.两条异面直线所成的角的范围:0°《α≤90°
直线与平面所成的角的范围:0o≤α≤90°
二面角的平面角的取值范围:0°≤α≤180°
8.你知道异面直线上两点间的距离公式如何运用吗?
9.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。
10.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?
11.棱柱及其性质、平行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
12.球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。
高考数学题型
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。一着不慎,满盘皆输)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
七、复数题型
复数是高中数学选修的知识点,每年必考题型,并且都是以选择题的形式出现,不是第一道题就是第二道题,以学姐的说法,就是白白送分题,所以这5分,是不容失分题,只要你把复数的运算掌握住,这道题就拿分了。
八、集合的运用题型
集合与元素的关系,也是高考常考题,一般也是选择题居多,很是简单,只是结合其他运算方式变换形式去考查集合与元素的关系、子集、空集等问题,属于送分题,这5分也是必拿分数。
九、等差数列、等比数列题型
这类题型每年高考必考题,不是选择题5分,就是第一道解答题12分,一般都是考查等差数列的知识点,很简单,掌握这个知识点并不难,多加练习就行,并且做些中档题题就行,此类型属于送分题,不会太难。
十、三角函数的正余弦求解、求边长、求面积、求周长
三角函数的正余弦知识点,历年高考数学必考题型,涉及到画图问题,易错点就是不会画图、计算失误,所以三角函数的正余弦知识点你必须加强,做题方法:先简单把图画出来,再标明题中给的条件及数值,最后进行推理计算,这道类型题也是属于送分题,一般分值在5分、12分,很轻松拿到。
十一、X、Y约束条件的最大值、最小值求解
约束条件也是数学高考常考题型,主要解题步骤:(1)先进行画图(2)分析X/Y取值范围,走势关系(3)代入公式,进行求最大值、最小值即可,关键点在于画图后,标明三条线的区域范围,必出找出线与线的相交点位置的数值,只要找出数值,求解就简单了,平常做题稍加练习即可,这5分应该很轻松拿到。
十二、向量运算法则、向量与几何的运算
向量知识点是高考数学必考内容,主要涉及到向量间的加减、乘积,向量的平方,平常你把向量的运算进行牢记,稍微做题练习,这类题型也就迎刃而解了,此类题型属于送分题。
高中数学解题技巧
1、因式分解
根据项数选择方法和按照一般步骤,是高中数学顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式-选择用公式-十字相乘法-分组分解法-拆项添项法。
2、换元法
高中数学解某些复杂的特型方程要用到“换元法”,换元法解方程的一般步骤是:设元-换元-解元-还元。
3、待定系数法
高中数学待定系数法是在已知对象形式的条件下求对象的一种方法,适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写。
4、一元二次方程根的讨论
高中数学一元二次方程根的符号问题或m型问题,可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。
“图像法”解决一元二次方程根的问题的一般思路是:题意-二次函数图像-不等式组(包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号)。
5、最值型应用题的解法
应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题,是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:设变量-列函数-求最值-写结论。
6、 函数奇偶性
高中数学对于属于R上的奇函数有f(0)=0;对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;奇偶性作用不大,一般用于选择填空。
7、两直线垂直或平行解题方法
已知直线L1:a1x+b1y+c1=0,直线L2:a2x+b2y+c2=0,若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合),这两个公式避免了斜率是否存在的麻烦。
8、椭圆中焦点三角形面积公式
S=b?tan(A/2)在双曲线中:S=b?/tan(A/2),说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
9、向量简洁公式
向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。记忆方法:在哪投影除以哪个的模。
10、圆锥曲线问题
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
11、离心率
高中数学求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。
12、数列问题
高中数学数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。
13、概率
高中数学概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径。
14、平移
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成。
15、求参数的取值范围
高中数学应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。
16、求曲线方程的题目
如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。
17、概率分布中的二项分布
二项式定理中的通项公式的使用与赋值的方法,全称与特称命题的否定写法,排列组合中的枚举法,取值范围或是不等式的解得端点能否取到需要单独验证,用点斜式或者斜截式方程的时候要考虑斜率是否存在等。
18、三角函数
如求a(cosB+cosC)/(b+c)coA之类的,先边化角,然后把第一题算的比如角A等于60度,直接假设B和C都等于60°带入求解。
19、构造法
在高中数学解题时,可以通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等。架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
高中数学运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
20、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个映射。
一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:平移;旋转;对称。
21、导数
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
22、代数式求值
高中数学方法有:直接代入法;化简代入法;适当变形法(和积代入法)。注意当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
高中数学如何解题
先易后难
高中数学就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
先熟后生
高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
高中数学先同后异
先做高考数学同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考数学计算题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
高考数学答题方法
一、巧解选择、填空题
解数学选择、填空题的基本原则是“小题不可大做”。思路:第一、直接从题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。
解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。
二、细答解答题
1、数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。
经常看到考生的数学卷面出现“会而不对”、“对而不全”的情况,造成考生自己的估分与实际得分相差很多。尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。
2、分步列式,尽量避免用综合或连等式。数学高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。
有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出最后结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会。
3、尽量保证证明过程及计算方法大众化。解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。