必胜高考网 > 高考备考 > 数学备考 >

高三理科数学复习知识点

时间: 谢君2 数学备考

  高三理科数学知识点

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  高考数学复习函数知识点

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  a>1

  图象特征

  函数性质

  向x、y轴正负方向无限延伸

  函数的定义域为R

  图象关于原点和y轴不对称

  非奇非偶函数

  函数图象都在x轴上方

  函数的值域为R+

  函数图象都过定点(0,1)

  自左向右看,

  图象逐渐上升

  自左向右看,

  图象逐渐下降

  增函数

  减函数

  在第一象限内的图象纵坐标都大于1

  在第一象限内的图象纵坐标都小于1

  在第二象限内的图象纵坐标都小于1

  在第二象限内的图象纵坐标都大于1

  图象上升趋势是越来越陡

  图象上升趋势是越来越缓

  函数值开始增长较慢,到了某一值后增长速度极快;

  函数值开始减小极快,到了某一值后减小速度较慢;

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,则;取遍所有正数当且仅当;

  (3)对于指数函数,总有;

  (4)当时,若,则;

87297