2017年高考数学知识点
2017年高考数学知识点
集合与函数
1、进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解、
2、在应用条件时,易A忽略是空集的情况
3、你会用补集的思想解决有关问题吗?
4、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5、你知道“否命题”与“命题的否定形式”的区别、
6、求解与函数有关的问题易忽略定义域优先的原则、
7、判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称、
8、求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域、
9、原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调、例如:、
10、你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11、 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示、
12、求函数的值域必须先求函数的定义域。
13、如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)、这几种基本应用你掌握了吗?
14、解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15、三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16、用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17、“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
不等式
18、利用均值不等式求最值时,你是否注意到:“一正;二定;三等”、
19、绝对值不等式的解法及其几何意义是什么?
20、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
21、解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”、
22、 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示、
23、 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
数列
24、解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
25、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
26、你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
27、数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
28、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
三角函数
29、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
30、三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
31、 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
32、 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角、 异角化同角,异名化同名,高次化低次)
33、 反正弦、反余弦、反正切函数的取值范围分别是
34、你还记得某些特殊角的三角函数值吗?
35、掌握正弦函数、余弦函数及正切函数的图象和性质、你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
36、函数的图象的平移,方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即、
(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即、
(3)点的平移公式:点按向量平移到点,则、
37、在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)
38、形如的周期都是,但的周期为。
39、正弦定理时易忘比值还等于2R、
平面向量
40、数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
41、数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出、
已知实数,且,则a=c,但在向量的数量积中没有、
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量、
42、是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
下一页更多有关“2017年高考数学知识点”的内容