必胜高考网 > 高考备考 > 数学备考 >

福建高考数学双曲线专项练习题附答案

时间: 思晴2 数学备考

  福建高考数学双曲线专项练习题:基础题

  A.双曲线 B.双曲线左边一支

  C.双曲线右边一支 D.一条射线

  2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为(  )

  A. B. C. D.(,0)

  3.(2014大纲全国,文11)双曲线C:=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于(  )

  A.2 B.2 C.4 D.4

  4.过双曲线=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是(  )

  A. B. C.2 D.

  5.已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是(  )

  A.-y2=1 B.x2-=1 C.=1 D.=1

  6.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上.若|F1A|=2|F2A|,则cosAF2F1=(  )

  A. B. C. D.

  7.(2014福建莆田模拟)已知双曲线=1的右焦点的坐标为(,0),则该双曲线的渐近线方程为     .

  8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直.若=0,则双曲线C的离心率e=     .

  9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).

  (1)求双曲线方程;

  (2)若点M(3,m)在双曲线上,求证:=0;

  (3)在(2)的条件下求△F1MF2的面积.

  10.(2014福建厦门模拟)双曲线=1(a>0,b>0)的一条渐近线方程是y=x,坐标原点到直线AB的距离为,其中A(a,0),B(0,-b).

  (1)求双曲线的方程;

  (2)若B1是双曲线虚轴在y轴正半轴上的端点,过点B作直线交双曲线于点M,N求时,直线MN的方程.

  福建高考数学双曲线专项练习题:能力提升题

  11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为(  )

  A. B.2 C.4 D.8

  12.已知点P是双曲线=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,点I为PF1F2的内心,若+λ成立,则λ的值为(  )

  A. B. C. D.

  13.若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(  )

  A.[3-2,+∞) B.[3+2,+∞)

  C. D.

  14.(2014浙江,文17)设直线x-3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是     .

  15.(2014湖南,文20)如图,O为坐标原点,双曲线C1:=1(a1>0,b1>0)和椭圆C2:=1(a2>b2>0)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.

  (1)求C1,C2的方程;

  (2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且||=||?证明你的结论.

  16.已知双曲线E:=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.

  (1)求双曲线E的离心率;

  (2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由.1.C 解析:|PM|-|PN|=3<4,

  ∴由双曲线定义知,其轨迹为双曲线的一支

  福建高考数学双曲线专项练习题答案

  又|PM|>|PN|,∴点P的轨迹为双曲线的右支.

  2.C 解析:双曲线的标准方程为x2-=1,a2=1,b2=.

  ∴c2=a2+b2=.

  ∴c=,故右焦点坐标为.

  3.C 解析:e=2,∴=2.

  设焦点F2(c,0)到渐近线y=x的距离为,

  渐近线方程为bx-ay=0,

  .

  ∵c2=a2+b2,∴b=.

  由=2,得=2,

  =4,

  解得c=2.焦距2c=4,故选C.

  4.A 解析:如图所示,在Rt△OPF中,OMPF,且M为PF的中点,

  则△POF为等腰直角三角形.

  所以△OMF也是等腰直角三角形.

  所以有|OF|=|OM|,即c=a.

  故e=.

  5.A 解析:由=0,可知.

  可设||=t1,||=t2,

  则t1t2=2.

  在△MF1F2中,=40,

  则|t1-t2|=

  ==6=2a.

  解得a=3.故所求双曲线方程为-y2=1.

  6.A 解析:双曲线的离心率为2,=2,

  ∴a∶b∶c=1∶∶2.

  又

  ∴|AF1|=4a,|AF2|=2a,

  ∴|F1F2|=2c=4a,

  ∴cos∠AF2F1

  =

  =,

  选A.

  7.2x±3y=0 解析:因为右焦点坐标是(,0),所以9+a=13,即a=4.

  所以双曲线方程为=1.

  所以渐近线方程为=0,

  即2x±3y=0.

  8. 解析:如图所示,设双曲线方程为=1,取其上一点P(m,n),

  则Q(m,-n),由=0可得(a-m,-n)·(m+a,-n)=0,

  化简得a2-m2+n2=0.

  又=1可得b=a,

  故双曲线的离心率为e=.

  9.(1)解:因为e=,

  所以可设双曲线方程为x2-y2=λ.

  因为双曲线过点(4,-),

  所以16-10=λ,即λ=6.

  所以双曲线方程为=1.

  (2)证明:由(1)可知,在双曲线中a=b=,所以c=2.

  所以F1(-2,0),F2(2,0).

  所以=(-2-3,-m),

  =(2-3,-m),

  则=9-12+m2=m2-3.

  因为点(3,m)在双曲线上,

  所以9-m2=6,即m2=3.

  所以=m2-3=0.

  (3)解:由(2)知△F1MF2的高h=|m|=,由△F1MF2的底边|F1F2|=4,

  则=6.

  10.解:(1)设直线AB:=1,

  由题意,所以

  所以双曲线方程为=1.

  (2)由(1)得B(0,-3),B1(0,3),

  设M(x1,y1),N(x2,y2),易知直线MN的斜率存在.

  设直线MN:y=kx-3,

  所以所以3x2-(kx-3)2=9.

  整理得(3-k2)x2+6kx-18=0,①

  所以x1+x2=,

  y1+y2=k(x1+x2)-6=,

  x1x2=,y1y2=k2(x1x2)-3k·(x1+x2)+9=9.

  因为=(x1,y1-3),=(x2,y2-3), ·=0,

  所以x1x2+y1y2-3(y1+y2)+9=0,

  即+9-+9=0,

  解得k2=5,所以k=±,代入①有解,

  所以lMN:y=±x-3.

  11.C 解析:设等轴双曲线方程为x2-y2=m(m>0),

  因为抛物线的准线为x=-4,

  且|AB|=4,所以|yA|=2.

  把坐标(-4,2)代入双曲线方程得m=x2-y2=16-12=4,

  所以双曲线方程为x2-y2=4,

  即=1.

  所以a2=4,所以实轴长2a=4.

  12.B 解析:设△PF1F2内切圆半径为r,根据已知可得×|PF1|×r=×|PF2|×r+×2c×r,

  整理可得|PF1|=|PF2|+2λc.

  由双曲线的定义可得

  |PF1|-|PF2|=2a,

  则2λc=2a,故λ=.

  13.B 解析:由a2+1=4,得a=,

  则双曲线方程为-y2=1.

  设点P(x0,y0),则=1,

  即-1.

  =x0(x0+2)+

  =+2x0+-1

  =,

  x0≥,∴当x0=时,取最小值3+2.故的取值范围是[3+2,+∞).

  14. 解析:双曲线=1的两条渐近线方程分别是y=x和y=-x.

  由

  解得A,

  由

  解得B.

  设AB中点为E,

  则E.

  由于|PA|=|PB|,所以PE与直线x-3y+m=0垂直,

  而kPE=,

  于是=-1.

  所以a2=4b2=4(c2-a2).

  所以4c2=5a2,解得e=.

  15.解:(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2.从而a1=1,c2=1.

  因为点P在双曲线x2-=1上,所以=1.故=3.

  由椭圆的定义知2a2

  ==2.

  于是a2==2.

  故C1,C2的方程分别为x2-=1,=1.

  (2)不存在符合题设条件的直线.

  ①若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=或x=-.

  当x=时,易知A(),B(,-),

  所以||=2,||=2.

  此时,||≠||.

  当x=-时,

  同理可知,||≠||.

  ②若直线l不垂直于x轴,设l的方程为y=kx+m.

  由

  得(3-k2)x2-2kmx-m2-3=0.

  当l与C1相交于A,B两点时,

  设A(x1,y1),B(x2,y2),

  则x1,x2是上述方程的两个实根,

  从而x1+x2=,x1x2=.

  于是y1y2=k2x1x2+km(x1+x2)+m2=.

  由得(2k2+3)x2+4kmx+2m2-6=0.

  因为直线l与C2只有一个公共点,所以上述方程的判别式Δ=16k2m2-8(2k2+3)(m2-3)=0.

  化简,得2k2=m2-3,

  因此=x1x2+y1y2=≠0,

  于是+2-2,

  即||≠||,

  故||≠||.

  综合①,②可知,不存在符合题设条件的直线.

  16.解法一:(1)因为双曲线E的渐近线分别为y=2x,y=-2x,

  所以=2,所以=2,

  故c=a,

  从而双曲线E的离心率e=.

  (2)由(1)知,双曲线E的方程为=1.

  设直线l与x轴相交于点C.

  当lx轴时,若直线l与双曲线E有且只有一个公共点,

  则|OC|=a,|AB|=4a,

  又因为△OAB的面积为8,

  所以|OC|·|AB|=8,

  因此a·4a=8,解得a=2,

  此时双曲线E的方程为=1.

  若存在满足条件的双曲线E,则E的方程只能为=1.

  以下证明:当直线l不与x轴垂直时,双曲线E:=1也满足条件.

  设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.

  记A(x1,y1),B(x2,y2).

  由得y1=,

  同理得y2=,

  由S△OAB=|OC|·|y1-y2|得,

  =8,

  即m2=4|4-k2|=4(k2-4).

  由得,

  (4-k2)x2-2kmx-m2-16=0.

  因为4-k2<0,

  Δ=4k2m2+4(4-k2)(m2+16)=-16(4k2-m2-16),

  又m2=4(k2-4),

  所以Δ=0,即l与双曲线E有且只有一个公共点.

  因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.

  解法二:(1)同解法一.

  (2)由(1)知,双曲线E的方程为=1.

  设直线l的方程为x=my+t,A(x1,y1),B(x2,y2).

  依题意得-2或k<-2.

  由得,(4-k2)x2-2kmx-m2=0,

  因为4-k2<0,Δ>0,

  所以x1x2=,

  又因为△OAB的面积为8,

  所以|OA|·|OB|·sinAOB=8,

  由已知sinAOB=,

  所以=8,化简得x1x2=4.

  所以=4,即m2=4(k2-4).

  由(1)得双曲线E的方程为=1,由得,(4-k2)x2-2kmx-m2-4a2=0,

  因为4-k2<0,直线l与双曲线E有且只有一个公共点当且仅当Δ=4k2m2+4(4-k2)(m2+4a2)=0,

  即(k2-4)(a2-4)=0,所以a2=4,

  所以双曲线E的方程为=1.

  当lx轴时,由△OAB的面积等于8可得l:x=2,又易知l:x=2与双曲线E:=1有且只有一个公共点.

  综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为=1.


猜你感兴趣:

1.福建高考完形填空专项训练附答案解析

2.福建高考完形填空专项练习题

3.福建高考英语阅读精选题带答案讲解

4.福建高考英语阅读训练题及答案解析

5.高考数学双曲线的定义知识点复习

94047