必胜高考网 > 高考备考 > 数学备考 >

高中数学必修知识点

时间: 世芳2 数学备考

  高中数学必修知识点:幂函数

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

  性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  高中数学必修知识点:指数函数

  一、指数函数的定义

  指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).

  二、指数函数的性质

  1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)

  2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)

  高中数学必修知识点:不等式的基本性质

  1.不等式的定义:a-b>0a>b, a-b=0a=b, a-b<0a

  ① 其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

  ②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

  作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

  2.不等式的性质:

  ① 不等式的性质可分为不等式基本性质和不等式运算性质两部分。

  不等式基本性质有:

  (1) a>bb

  (2) a>b, b>ca>c (传递性)

  (3) a>ba+c>b+c (c∈R)

  (4) c>0时,a>bac>bc

  c<0时,a>bac

  运算性质有:

  (1) a>b, c>da+c>b+d。

  (2) a>b>0, c>d>0ac>bd。

  (3) a>b>0an>bn (n∈N, n>1)。

  (4) a>b>0>(n∈N, n>1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ② 关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。


99372