2023年全国乙卷高考数学文科试题及答案解析
2023年全国乙卷高考数学文科试题
2023年全国乙卷高考数学文科答案
高考数学选择题答题步骤有哪些
1.数学突破运算
运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到最后,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因.
2.突破数学概念公式图形
这一块内容在数学课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,数学课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?
这就需要你自己总结,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。
同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加绝对值,或者对x,y同时加绝对值它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗?
3.突破选择
数学的选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。那么选择题到底该如何突破呢?
突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等
4.突破-解答题
数学解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。
一般高考考场中的解答题题型基本是固定的,所以我们可以通过归纳出的一些结论,特殊公式,一般解题思路及模板等再结合四步解题思路完成解答题的快速求解。
高考数学的答题技巧有哪些
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
数学复习技巧
数学复习要回归基础的重新梳理
在数学高考试卷中,四道基本题基本定稿,即三取一题、三角数列题、概率题和三维几何题。这些大题是高考解题评分的主要阵地。在过去的考试中,相当多的学生考试成绩很低。他们不是在难题上失分,而是在太多的基本问题上失分,导致最终考试成绩不令人满意。
因此,在以后的复习过程中,我们应该理清知识,尽可能地回到基础,再现知识的背景和基本的数学方法。保证每天做一定量的基本问题,不断加强基本问题解决的训练,使学生能做对并完成这部分基本问题,得满分。
数学复习要对关键问题的频繁回顾
在复习的后期,为了在有限的时间内最大限度地发挥复习的效益,我们必须关注关键问题类型。对于数学的几个主要部分,如函数和导数、三角函数、级数、立体几何、解析几何和统计概率,我们应该专注于复习关键知识,并愿意花费时间和精力。
在复习过程中,学生应了解自己的知识或解决问题的能力是否存在缺陷。如果发现缺陷,应根据解决问题的方法和途径重新整合相关内容,形成知识和方法的经纬度图。