数学运算专题练习及答案解析
2.有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
A.16 B.15 C.14 D.13
3. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81 元,那么三人原来的钱分别是多少元?
A.20,11,50 B.19,7,55 C.12,9,60 D.11,15,55
4.有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?
A.15 B.14 C.13 D.12
5.在一个两位数之间插入一个数字,就变成一个三位数。例如:在72中间插入数字6,就变成了762。有些两位数中间插入数字后所得到的三位数是原来两位数的9倍,下列数字满足条件的是:
A.25 B.20 C.18 D.17
1.B。【解析】5个80斤的则为400斤,剩余23斤,分一下。 从0、1、2、3、4、5、6、7中选,最轻只有选2了,如选3,则3、4、5、6、7加起来超过23。所以为82斤。
2.A。【解析】先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1.哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2.弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是 17-9=8;3.哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块。
3.B。【解析】三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1.甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2.甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3.最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元。
4.D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。
5.A。【解析】对于这个题来说,首先要判断个位是多少,这个数的个位乘以9以后的个位还等于原来的个位,说明个位只能是0或5,先看0,很快发现不行,因为20×9=180,30×9=270,40×9=360等等,不管是几十乘以9,结果百位总比十位小,所以各位只能是5。略作计算,不难发现:15,25,35,45是满足要求的数。故选A。
数学运算专题练习2:
1.在一条马路的两旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,求这条马路的长度。
A.300米 B.297米 C.600米 D.597米
2.在一场象棋循环赛中,每位棋手必须和其他棋手对奕一局,且同一对棋手只奕一次。这次比赛共弈了36局棋,问棋手共有几位?
A.6 B. 7 C. 8 D. 9
3.某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?
A.15人 B.16人 C.17人 D.18人
4.1条绳子1米长,第一次剪掉1/3,第二次剪掉剩下的1/3,那连续剪掉4次后,剪掉部分总和多长?
5.若干学生住若干房间,如果每间住4人,则有20人没地方住,如果每间住8人,则有一间只有4人住,问共有多少学生?
A.30人 B.34人 C.40人 D.44人
1、【解析】设路长X 2×X/3+2+3=2×X/2.5+2-37,得X=300
2、【解析】设共有X人那么所有的对局数为(X-1)+(X-2)+...+1=36,根据数学公式(X-1)×<(X-1)+1>/2=36 X=9,关于这个公式也就是说连续的自然数的和等于首项加上末项去除以2,然后乘以项数。
3、【解析】利用三交集公式A+B+C=AUBUC+AnB+BnC+AnC-AnBnC(AnBnC是指语文,数学,英语三个都参加的人,AUBUC是只总人数) A+B+C=17+30+13;AnBnC=5;AUBUC=35;所求为AUBUC-(AnB+BnC+AnC)+AnBnC
4、【解析】1-2/3×2/3×2/3×2/3=65/81
5、【解析】如果每间住8人,则有一间只有4人住可知,人数/8余数是4,只有D符合。