2018公务员考试行测抽屉问题解题技巧
2018公务员考试行测抽屉问题解题技巧
原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
证明(反证法):
如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2:把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3:
把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
例1:400人中至少有2个人的生日相同。
例2:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
例3:从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例4:从任意5双手套中任取6只,其中至少有2只恰为一双手套。
例5:从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
抽屉原理与整除问题
整除问题:把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示。每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,…。在研究与整除有关的问题时,常用剩余类作为抽屉。根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1证明:任取8个自然数,必有两个数的差是7的倍数。
2018公务员考试行测抽屉问题考法
① 苹果数
I. 若干本书,发给50名同学,至少需要多少本书才能保证有同学能拿到4本书?
分析:“至少才能保证”就是考虑最差情况,让每名同学先各拿到3本,在这种情况下,再有一本书发给任何一名同学,就能保证有同学拿到4本书,所以,共需50×3+1=151本。
II. 若干本书,发给50名个同学,至少需要多少本书就可能有同学拿到4本?
分析:“至少可能”就是考虑最好情况,直接给其中
的一名同学发4本,需4本。
III. 若干本书,发给50名个同学,每名同学都能拿到书,至少需要多少本书就可能有同学拿到4本?
分析:“至少可能”就是考虑最好情况,先让每名同学各拿一本,再给其中任何一名同学再发3本,共需50+3=53本。
② 抽屉数
I. 把150本书分给四年级某班的同学,如果不管怎样分,都至少有一位同学会分得5本或5本以上的书,那么这个班最多有多少名学生?
分析:“不管怎样分,都至少有一位同学会分得5本或5本以上的书”,让每名同学先各拿到4本,150÷4=37??2,此时还剩余2本,再平均分给任何两名同学,即可满足题目要求,所以此班最多有37名学生。
II. 把150本书分给四年级某班的同学,要求每人都能分到书,且有同学分得5本书,那么这个班最多有多少名学生?
分析:求学生数最多,就得让每位同学分到最少。根据要求“每人都能分到书,且有同学分得5本书”,让1名同学得5本,剩余的145本让每名同学各1本,即最有146名学生。
III. 把150本书分给四年级某班的同学,要求每人至少分到2本书,且有同学分得7本书,那么这个班最多有多少名学生?
分析:求学生数最多,就得让每位同学分到最少。根据要求“每人至少分到2本书,且有同学分得7本书”,让1名同学得7本,剩余的143本让每名同学各2本,还剩余1本(相当于这一本书浪费了,没有这本数,所求的学生数最多也是这样),即143÷2=71……1,能分给71名同学,再加上得到7本的同学,所以最多有72名学生。
猜你感兴趣:
1.2018公务员考试语句衔接题解题技巧
2.2018公务员考试片段阅读解题技巧
3.2018公务员考试语句排序题解题技巧
4.2018公务员考试言语理解常见选项设错陷阱
5.2018公务员考试行测阅读理解题解题技巧