行测技巧提点之如何巧解方阵问题
行测技巧提点之如何巧解方阵问题:什么是方阵问题
行测技巧提点之如何巧解方阵问题:方阵问题的具体特点
(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2人;
(2)每边人(或物)数和四周人(或物)的关系:四周人(或物)数=[每边人(或物)数-1]×4;
(3)实心方阵的总人数(或物)=每边人(或物)数×每边人(或物)数;
(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4。
行测技巧提点之如何巧解方阵问题:方阵问题的五大计算公式
(1)方阵总数=最外层每边数目的平方;
(2)方阵最外一层总数比内一层总数多8(行数和列数分别大于2);
(3)方阵最外层每边数目=(方阵最外层总数÷4)+1;
(4)方阵最外层总数=[最外层每边数目-1]×4;
(5)去掉一行、一列的总数=去掉的每边数目×2-1。
行测技巧提点之如何巧解方阵问题:方阵问题的巧解
【例题1】 阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?
A.69 B.52 C.127 D.160
【答案】D。中公解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
【例题2】 阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?
A.69 B.52 C.127 D.160
【答案】D。中公解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
【例题3】 有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有( )块。
A.180 B.196 C.210 D.220
【答案】D。中公解析:利用总人数=单边人数的平方即N^2可知N^2=400,N=20,即最外圈绿色花盆=4x(20-1)= 76。根据相邻两层差8,可得出每层的花盆总数76,68,60,52,44,36,28,20,12,4.红色花盆总数=76+60+44+28+12=220。所以本题选D。