数量关系等差数列解题技巧
数量关系等差数列解题技巧:等差数列
等差数列是数字推理题中最基本的规律,是解决数字推理题的“第一思维”。所谓“第一思维”是指在进行任何数字推理题的解答时,都要首先想到等差数列,即从数字与数字之间的差的关系上进行判断和推理。
【例1】19,23,27,31,( ),39。
A.22 B.24 C.35 D.11
【解答】本题正确答案为C。这是一道典型的等差数列,相邻两数字之间的差相等,我们很容易发现这个差为4,所以可知答案为31+4=35。
数量关系等差数列解题技巧:三级等差数列及其变式
三级等差数列及其变式是指该数列的后项减去前项得一新的二级等差数列及其变式。
【例5】1,10,31,70,133,( )。
A.136 B.186 C.226 D.256
【解答】 本题正确答案为C。该数列为三级等差数列。10-1=9,31-10=21,70-31=39,133-70=63;21-9=12,39-21=18,63-39=24。观察新数列:12,18,24,可知其为公差为6的等差数列,故空缺处应为24+6+63+133=226,所以选C项。
数量关系等差数列解题技巧:二级等差数列
如果一个数列的后项减去前项又得到一个新的等差数列,则原数列就是二级等差数列,也称二阶等差数列。
【例2】 147,151,157,165,( )。
A.167 B.171 C.175 D.177
【解答】 本题正确答案为C。这是一个二级等差数列。该数列的后项减去前项得到一个新的等差数列:4,6,8,( )。观察此新数列,可知其公差为2,故括号内应为10,则题干中的空缺项应为165+10=175,故选C。
【例3】32,27,23,20,18,( )。
A.14 B.15 C.16 D.17
【解答】 本题正确答案为D。这是一个典型的二级等差数列。该数列的前一项减去后一项得一个新的等差数列:5、4、3、2。观察此新数列,其公差为-1,故空缺处应为18+(-1)=17。
数量关系等差数列解题技巧:二级等差数列的变式
数列的后一项减前一项所得的差组成的新数列是一个呈某种规律变化的数列,这个数列可能是自然数列、平方数列、立方数列,或者与加、减“1”的形式有关。
【例4】10,18,33,( ),92。
A.56 B.57 C.48 D.32
【解答】本题正确答案为B。这是一个二级等差数列的变式。由题目知:18-10=8,33-18=15,其中8=32-1,15=42-1,可知后项减前项的差是n2-1,n为首项是3的自然递增数列,那么下一项应为52-1=24,故空缺项应为33+24=57,以此来检验后面的数字,92-57=62-1,符合规律,所以答案应选B。