多项式除以单项式教案及反思
多项式除以单项式教案:
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于
,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
教法建议
(1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。
(2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。
(3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的运算。
(4)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。
教学设计示例
教学目标:
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
1.多项式除以单项式的法则及其应用.
2.理解法则导出的根据。
课时安排:
一课时.
教具学具:
投影仪、胶片.
教学过程:
1.复习导入
(l)用式子表示乘法分配律.
(2)单项式除以单项式法则是什么?
(3)计算:
①
②
③
(4)填空:
规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.讲授新课
例1 计算:
(1)
(2)
解:(1)原式
(2)原
注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.
(2)要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
例2 化简:
解:原式
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)P150 1,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为。
3.小结
1.多项式除以单项式的法则是什么?
2.运用该法则应注意什么?
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P152 A组1,2。
B组1,2。
多项式除以单项式教学反思:
多项式除以单项式这一课时,课本上的内容是比较简单,但我深深地感到,要把它上好,也是不那么容易。为了上好这节课我课前做了充分的准备。
这节课的设计现在来看是比较成功的,我没有完全按课本的内容去上,我从复习单项式与多项式的乘法和单项式除以单项式的法则开始,结合乘除法之间是逆运算的关系引导学生自主探、索归纳多项式除以单项式的规律,然后用课本上的二个图来验证学生总结的规律,以期达到直接向学生渗透了数形结合的思想和渗透“发现—总结—验证”的数学思想。在法则的应用这一环节我增加了一个综合题,目的是发展学生智力、提高学生的综合运算能力的目的。
在教学过程中仍有很多有待改进的地方。
1、给学生练习的时间比较合适,但让学生纠错的时间不够多,中下等学生对解题方法与技巧没有得到及时的掌握与巩固。
2、学生练习的过程中如果能让他们进行板演可能更能激发学生的学习热情。
3、在时间的把据上做得不够好,从而在总结时没能让学生的小结,使学生少了一次锻炼的机会。
经过这一课时的教学与探讨,我深深感到,上好一节课,教师除了要仔细认真地钻研教材之外,还要全面分析了解学生,从学生的实际出发认真备好教学中的每一个环节,才能在我们的教学过程中巧妙地为学生铺路搭桥,帮助学生跨越重重障碍,体验学习成功的喜悦。
看完这篇文章