必胜高考网 > 中考 > 中考数学备考 >

中考数学一模模拟试题附答案

时间: 思晴2 中考数学备考

  中考数学一模模拟试题A级 基础题

  A.(2,4)  B.(-2,-4)  C.(-4,2) D.(4,-2)

  2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为(  )

  A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8  D.b=-6,c=2

  3.如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是(  )

  A.abc<0   B.2a+b<0  C.a-b+c<0  D.4ac-b2<0

  4.二次函数y=ax2+bx的图象如图3-4-12,那么一次函数y=ax+b的图象大致是(  )

  5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是(  )

  A.抛物线开口向上       B.抛物线的对称轴是x=1

  C.当x=1时,y的最大值为-4   D.抛物线与x轴的交点为(-1,0),(3,0)

  6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:

  x … -3 -2 -1 0 1 …

  y … -3 -2 -3 -6 -11 …

  则该函数图象的顶点坐标为(  )

  A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)

  7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.

  8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.

  9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).

  (1)求抛物线的解析式;

  (2)求抛物线的顶点坐标.

  中考数学一模模拟试题B级 中等题

  10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是(  )

  A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3

  11.二次函数y=ax2+bx+c的图象如图3-4-13,给出下列结论:①2a+b>0;②b>a>c;③若-1

  图3-4-13

  12.(2013年广东)已知二次函数y=x2-2mx+m2-1.

  (1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;

  (2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;

  (3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

  中考数学一模模拟试题C级 拔尖题

  13.如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.

  (1)若抛物线过点M(-2,-2),求实数a的值;

  (2)在(1)的条件下,解答下列问题;

  ①求出△BCE的面积;

  ②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.

  14.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1<0

  (1)求证:n+4m=0;

  (2)求m,n的值;

  (3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.

  15.如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).

  (1)求此抛物线的解析式;

  (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;

  (3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.

  中考数学一模模拟试题答案

  1.A

  2.B 解析:利用反推法解答, 函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.

  3.D 4.C 5.C 6.B

  7.k=0或k=-1 8.y=x2+1(答案不唯一)

  9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),

  ∴抛物线的解析式为y=-(x-3)(x+1),

  即y=-x2+2x+3.

  (2)∵y=-x2+2x+3=-(x-1)2+4,

  ∴抛物线的顶点坐标为(1,4).

  10.B 11.①③④

  12.解:(1)将点O(0,0)代入,解得m=±1,

  二次函数关系式为y=x2+2x或y=x2-2x.

  (2)当m=2时,y=x2-4x+3=(x-2)2-1,

  ∴D(2,-1).当x=0时,y=3,∴C(0,3).

  (3)存在.接连接C,D交x轴于点P,则点P为所求.

  由C(0,3),D(2,-1)求得直线CD为y=-2x+3.

  当y=0时,x=32,∴P32,0.

  13.解:(1)将M(-2,-2)代入抛物线解析式,得

  -2=1a(-2-2)(-2+a),

  解得a=4.

  (2)①由(1),得y=14(x-2)(x+4),

  当y=0时,得0=14(x-2)(x+4),

  解得x1=2,x2=-4.

  ∵点B在点C的左侧,∴B(-4,0),C(2,0).

  当x=0时,得y=-2,即E(0,-2).

  ∴S△BCE=12×6×2=6.

  ②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,

  根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.

  设直线BE的解析式为y=kx+b,

  将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,

  解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.

  将x=-1代入,得y=12-2=-32,

  则点H-1,-32.

  14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,

  ∴抛物线的对称轴为x=2,即-n2m=2,

  化简,得n+4m=0.

  (2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1<0

  ∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.

  令x=0,得y=p,∴C(0,p).∴OC=|p|.

  由三角函数定义,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.

  ∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.

  化简,得x1+x2x1•x2=-1|p|.

  将x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化简,得⇒n=p|p|=±1.

  由(1)知n+4m=0,

  ∴当n=1时,m=-14;当n=-1时,m=14.

  ∴m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).

  (3)解:由(2)知,当p>0时,n=1,m=-14,

  ∴抛物线解析式为:y=-14x2+x+p.

  联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,

  化简,得x2-4(p-3)=0.

  ∵二次函数图象与直线y=x+3仅有一个交点,

  ∴一元二次方程根的判别式等于0,

  即Δ=02+16(p-3)=0,解得p=3.

  ∴y=-14x2+x+3=-14(x-2)2+4.

  当x=2时,二次函数有最大值,最大值为4.

  15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,

  此抛物线过点A(0,-5),

  ∴-5=a(0-3)2+4,∴a=-1.

  ∴抛物线的解析式为y=-(x-3)2+4,

  即y=-x2+6x-5.

  (2)抛物线的对称轴与⊙C相离.

  证明:令y=0,即-x2+6x-5=0,得x=1或x=5,

  ∴B(1,0),C(5,0).

  设切点为E,连接CE,

  由题意,得,Rt△ABO∽Rt△BCE.

  ∴ABBC=OBCE,即12+524=1CE,

  解得CE=426.

  ∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.

  又点C到抛物线对称轴的距离为5-3=2,而2>426.

  则此时抛物线的对称轴与⊙C相离.

  (3)假设存在满足条件的点P(xp,yp),

  ∵A(0,-5),C(5,0),

  ∴AC2=50,

  AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.

  ①当∠A=90°时,在Rt△CAP中,

  由勾股定理,得AC2+AP2=CP2,

  ∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,

  整理,得xp+yp+5=0.

  ∵点P(xp,yp)在抛物线y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5.

  ∴xp+(-x2p+6xp-5)+5=0,

  解得xp=7或xp=0,∴yp=-12或yp=-5.

  ∴点P为(7,-12)或(0,-5)(舍去).

  ②当∠C=90°时,在Rt△ACP中,

  由勾股定理,得AC2+CP2=AP2,

  ∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,

  整理,得xp+yp-5=0.

  ∵点P(xp,yp)在抛物线y=-x2+6x-5上,

  ∴yp=-x2p+6xp-5,

  ∴xp+(-x2p+6xp-5)-5=0,

  解得xp=2或xp=5,∴yp=3或yp=0.

  ∴点P为(2,3)或(5,0)(舍去)

  综上所述,满足条件的点P的坐标为(7,-12)或(2,3).


猜你感兴趣:

1.中考数学一模模拟试题及答案

2.中考数学一模模拟试卷及答案

3.中考数学一模模拟试题带答案

4.中考数学一模测试题附答案

97407