必胜高考网 > 中考 > 中考数学备考 >

2017中考数学备考重点知识

时间: 世芳2 中考数学备考

  直线形

  ☆ 内容提要☆

  一、 直线、相交线、平行线

  1.线段、射线、直线三者的区别与联系

  从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

  2.线段的中点及表示

  3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

  4.两点间的距离(三个距离:点-点;点-线;线-线)

  5.角(平角、周角、直角、锐角、钝角)

  6.互为余角、互为补角及表示方法

  7.角的平分线及其表示

  8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

  9.对顶角及性质

  10.平行线及判定与性质(互逆)(二者的区别与联系)

  11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

  12.定义、命题、命题的组成

  13.公理、定理

  14.逆命题

  二、 三角形

  分类:⑴按边分;

  ⑵按角分

  1.定义(包括内、外角)

  2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

  3.三角形的主要线段

  讨论:①定义②××线的交点—三角形的×心③性质

  ① 高线②中线③角平分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

  5.全等三角形

  ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

  ⑵特殊三角形全等的判定:①一般方法②专用方法

  6.三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7.重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

  8.证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法—反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

  三、 四边形

  分类表:

  1.一般性质(角)

  ⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

  ⑶外角和:360°

  2.特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

  ⑶判定步骤:四边形→平行四边形→矩形→正方形

  ┗→菱形——↑

  ⑷对角线的纽带作用:

  3.对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)

  4.有关定理:①平行线等分线段定理及其推论1、2

  ②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

  6.作图:任意等分线段。

  四、 应用举例(略)

  第五章 方程(组)

  相似形

  ★重点★相似三角形的判定和性质

  ☆内容提要☆

  一、本章的两套定理

  第一套(比例的有关性质):

  涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

  第二套:

  注意:①定理中“对应”二字的含义;

  ②平行→相似(比例线段)→平行。

  二、相似三角形性质

  1.对应线段…;2.对应周长…;3.对应面积…。

  三、相关作图

  ①作第四比例项;②作比例中项。

  四、证(解)题规律、辅助线

  1.“等积”变“比例”,“比例”找“相似”。

  2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴

  ⑵

  ⑶

  3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

  4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。

  5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

  五、 应用举例(略)

  函数及其图象

  ★重点★正、反比例函数,一次、二次函数的图象和性质。

  ☆ 内容提要☆

  一、平面直角坐标系

  1.各象限内点的坐标的特点

  2.坐标轴上点的坐标的特点

  3.关于坐标轴、原点对称的点的坐标的特点

  4.坐标平面内点与有序实数对的对应关系

  二、函数

  1.表示方法:⑴解析法;⑵列表法;⑶图象法。

  2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有

  意义。

  3.画函数图象:⑴列表;⑵描点;⑶连线。

  三、几种特殊函数

  (定义→图象→性质)

  1. 正比例函数

  ⑴定义:y=kx(k≠0) 或y/x=k。

  ⑵图象:直线(过原点)

  ⑶性质:①k>0,…②k<0,…

  2. 一次函数

  ⑴定义:y=kx+b(k≠0)

  ⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

  ⑶性质:①k>0,…②k<0,…

  ⑷图象的四种情况:

  3. 二次函数

  ⑴定义:

  特殊地, 都是二次函数。

  ⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。

  ⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。

  4.反比例函数

  ⑴定义: 或xy=k(k≠0)。

  ⑵图象:双曲线(两支)—用描点法画出。

  ⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

  四、重要解题方法

  1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

  2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。

  六、应用举例(略)


99017