高考数学基础知识点
高考数学基础知识点
(2)注意:讨论的时候不要遗忘了的情况。
(3)第二部分函数与导数
1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
①在区间上是增函数当时有 ;
②在区间上是减函数当时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
①;②;③;
④;⑤;
⑶函数周期的判定
①定义法(试值)②图像法③公式法(利用(2)中结论)
⑷与周期有关的结论
①或 的周期为;
②的图象关于点中心对称周期为2 ;
③的图象关于直线轴对称周期为2 ;
④的图象关于点中心对称,直线轴对称周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数:(;⑵指数函数:;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数:;(6)正切函数:;⑺一元二次函数:;
⑻其它常用函数:
1 正比例函数:;②反比例函数:;特别的
2 函数;
9.二次函数:
⑴解析式:
①一般式:;②顶点式:,为顶点;
③零点式:。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法:①描点法(特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ,( ———纵坐标不变,横坐标伸长为原来的倍;
ⅱ,( ———横坐标不变,纵坐标伸长为原来的倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ;ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻(在左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作;
⑵常见函数的导数公式: ①;②;③;
④;⑤;⑥;⑦;
⑧。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ是增函数;ⅱ为减函数;
ⅲ为常数;
③利用导数求极值:ⅰ求导数;ⅱ求方程的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:①(常数);
②;
③(其中。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积:;
3 求变速直线运动的路程:;③求变力做功:。
第三部分三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化:弧度,弧度,弧度
⑵弧长公式:;扇形面积公式:。
2.三角函数定义:角中边上任意一点为,设则:
3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴对称轴:;对称中心:;
⑵对称轴:;对称中心:;
6.同角三角函数的基本关系:;
7.两角和与差的正弦、余弦、正切公式:①
②③。
8.二倍角公式:①;
②;③。
9.正、余弦定理:
⑴正弦定理: (是外接圆直径)
注:①;②;③。
⑵余弦定理:等三个;注:等三个。
10。几个公式:
⑴三角形面积公式:;
⑵内切圆半径r= ;外接圆直径2R=
11.已知时三角形解的个数的判定:
第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法:。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为则:cos2 +cos2 +cos2=1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为则有cos2 +cos2 +cos2=2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为,则正四面体的:
1 高:;②对棱间距离:;③相邻两面所成角余弦值:;④内切2 球半径:;外接球半径:;
下一页更多有关“高考数学基础知识点”的内容